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We study the conductance through Aharonov-Bohm finite ladder rings with strongly interacting electrons,
modeled by the prototypical t-J model. For a wide range of parameters we observe characteristic dips in the
conductance as a function of magnetic flux, predicted so far only in chains which are a signature of spin and
charge separation. These results open the possibility of observing this peculiar many-body phenomenon in
anisotropic ladder systems and in real nanoscopic devices.
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I. INTRODUCTION

The phenomenon of the fractionalization of an electron
into its spin and charge degrees of freedom was predicted
theoretically for one-dimensional �1D� strongly interacting
systems in the framework of the Luttinger liquid �LL�
theory.1–3 Continuing progress in fabrication techniques and
the discovery of new materials of quasi-1D electronic char-
acter have led in the last decade to a variety of experiments
that seek evidence of spin-charge separation �SCS� such as
the observation of nonuniversal power-law I-V
characteristics,4 the search for characteristic dispersive fea-
tures by angle-resolved photoemission spectroscopy
�ARPES�,5 the violation of the Wiedemann-Franz law,6 and
the analysis of spin and charge conductivities.5,7 Among the
candidate materials for presenting SCS,8 we can mention the
organic Bechgaard and Fabre salts, molybdenum bronzes and
chalcogenides,4 cuprate chain and ladder compounds,9 later-
ally confined two-dimensional electron gases, cleaved-edge
overgrowth systems,10 and also carbon nanotube
systems.11,12

From the theoretical point of view, several ways for de-
tecting and visualizing SCS were proposed. Direct calcula-
tions of the real-time evolution of electronic wave packets in
Hubbard rings revealed that the spin and charge densities
dispersed with different velocities as an immediate conse-
quence of SCS.13,14 The analysis of the electronic transmis-
sion through Aharonov-Bohm �AB� rings15–17 described by a
LL presented striking features characteristic of SCS, where
the flux dependence of the transmission was found to show
new structures appearing at fractional flux values in addition
to the noninteracting flux quantum periodicity �0=hc /e. In
Ref. 15 these fractions were determined by the ratio between
the spin and charge velocities, vs /vc. In the interpretation in
Ref. 15 the dips arise because transmission requires the sepa-
rated spin and charge degrees of freedom of an injected elec-
tron to recombine at the drain lead after traveling through the
ring a different number of turns in the presence of the AB
flux. However, recent results, which go beyond the single-
pole approximation used in Ref. 15, suggest that this idea is
too simple and that the number of dips is not determined
approximately by vc /vs but by vJ /vs, where vJ is the current
velocity.16 The results, however, agree for small integer val-
ues of p and q, for vs /vc= p /q. Recent numerical calculations
of the transmittance through finite AB rings described by the

t-J model show clear dips at the fluxes that correspond to the
ratio vs /vc.

17 As we explain below, the discrepancy arises
due to the finiteness of the system.

In spite of the clear indications of the existence of spin-
charge separation in 1D interacting systems and its absence
in three dimensions where the Fermi-liquid theory is valid,
there is no final word for two dimensions. The non-Fermi-
liquid normal state properties of high-temperature supercon-
ductors have led to attempts to trace their origin in the pos-
sible realization of SCS in strongly correlated electron
systems in two dimensions.18

In this paper we explore the possibility of the existence of
SCS in ladders, as a step toward two dimensions. We analyze
the conductance through rings formed by two-leg ladder sys-
tems described by the t-J model as a prototype of interacting
systems. For certain parameters we find, indeed, clear dips at
fractional values of the magnetic flux that we can interpret as
fingerprints of charge and spin separation due to the differ-
ence in the charge and spin velocities.

II. MODEL

Our model Hamiltonian reads H=Hleads+Hlink+Hring �Fig.
1�, where Hleads describes free electrons in the left and right
leads,

Hlink = − t��
�

�a−1,�
† c01,� + a1,�

† cL/21,� + H.c.� �1�

describes the exchange of quasiparticles between the leads
�ai,�� and particular sites of leg 1 �ci1,��, and

Hring = − eVg�
i,l,�

cil,�
† cil,�

− t��cil,�
† cil+1,�e−i�/L + H.c.�

− t��
i,�

�ci1,�
† ci2,� + H.c.� + Hint �2�

describes the interacting electron system. The fermionic op-
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FIG. 1. Schematic representation of the system.
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erators cil,�
† create an electron at site i=1, L of leg l=1,2

with spin �. The AB ring has L rungs, is threaded by a flux
� ��=2�� /�0�, and is subjected to an applied gate voltage
Vg.

As we will consider the t-J model for the ladder, the in-
teracting part of the Hamiltonian reads

Hint = J��
i,l

Sil
· Sil+1 + J��

i

Si1
· Si2

, �3�

where Sil
=���cil�

† ���cil�
is the spin at site i and leg l and no

double occupancy is allowed.
When the ground state is nondegenerate, the zero-

temperature transmission from left to right can be calculated
to second order in t� by means of retarded Green’s function
for the isolated ring between sites i and j, Gi,j

R ���, for an
incident particle with energy � and momentum �k,15,19

T��,Vg,�� =
4t2 sin2 k�t̃����2

��� − 	��� + teik�2 − �t̃2�����2
, �4�

where 	���= t�2G01,01

R ���, the effective hopping across the

ring is t̃���= t�2G01,L/21

R ���, and �=−2t cos k is the tight-
binding dispersion relation for free electrons in the leads.
This equation is in fact exact for a noninteracting system;
with interactions on the ring it serves as an approximation in
the tunneling limit t� / t
1,15,19 for a nondegenerate ground
state. For an odd number of electrons, the ground state is
Kramers degenerate for a system with time-reversal symme-
try and the equation ceases to be valid.19,20 So we assume
that the ensuing Kondo effect is destroyed by temperature or
magnetic field.17,19 The conductance is G= �2e2 /h�T.

We calculate T�� ,Vg ,�� by numerically diagonalizing the
isolated interacting ring in the presence of a magnetic field
with L rungs and N electrons in the ground state to obtain
Green’s functions, which appear in Eq. �4�, fixing the chemi-
cal potential of the noninteracting leads to zero ��=0�. By
varying Vg, T�0,Vg ,�� presents narrow peaks with a width
proportional to �t��2 at gate voltages that correspond to the
excitation energies of the system.17,19 The transmittance is
obtained by integrating the spectra over a small energy win-
dow at the Fermi energy.15–17

III. RESULTS

In order to study the robustness of the spin-charge sepa-
ration in the presence of a second chain, we first show results
for weakly coupled chains �t�
 t�� and J=0 for which we
know that in one chain there is complete SCS.17,21,22 In Fig.
2 we show the results for several small values of t� and, in
fact, observe clear dips at certain fractional values of the
magnetic flux �the abrupt jumps correspond to other level
crossings�. This is evidence of charge-spin separation in fi-
nite systems with more than one chain.

To understand the position of the dips, we resort to the
expression obtained in one dimension for J=0.17,23 Consid-
ering a nondegenerate ground state containing N=Ne+1 par-
ticles and analyzing the part of Green’s function that enters
the transmittance when a particle is destroyed, it is shown

that the dips occur when two intermediate states cross at a
given flux and interfere destructively. These particular fluxes
depend on the spin quantum numbers and are located at

�d = ��2n + 1�/Ne, �5�

where n is an integer. If the integration energy window in-
cludes these levels, a dip in the conductance arises.

For the ladder with t�=0 and a total even number N of
electrons in the ground state, the lowest-lying state has N /2
electrons in each leg. As we are calculating the transmittance
through one leg only and the intermediate state has one par-
ticle less, from the condition for �d with Ne=N /2−1, one
expects to see dips at �d=�

2n+1
N/2−1 . In Fig. 2 we see that this is

the case since for the top figure there will be Ne+1=3 elec-
trons in each leg, leading to a dip at �=� /2, and for the
bottom figure there will be 4 electrons in each leg, leading to
a dip at �=� /3. When the “second” dimension is turned on
and t��0, we find that the dips remain and are quite robust,
even for values of t� / t� as high as 0.1.

These are so far the results for a weak interchain cou-
pling. Another interesting case is the one with a large cou-
pling between the legs, t�� t�. In this limit and for the non-
interacting case, the bands corresponding to the bonding and
antibonding states of each rung are very far apart and one
might expect the reappearance of SCS. In fact, this is the
case, as can be seen in Fig. 3, where we plot the transmit-
tance for a ladder with several values of t� and fillings. Now
the total number of electrons in the lower band corresponds
to the total filling N �for a less-than-half-filled band� and the
transmittance will involve Ne=N−1 electrons. Hence, if SCS
exists, the dips will be found at fluxes �d=�

2n+1
N−1 . In this

figure we find that for large values of t� / t�, the dips corre-
spond indeed to these fluxes. For smaller values of t�, we
find a shift in the location of the minima and sometimes a
splitting of the dips.

It is interesting to visualize the behavior of the dips when
changing the parameters from weakly interacting chains to
the strong-coupling case �small to big t� / t��. In Fig. 4 we
collect the data for N=6 particles, where we see that for
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FIG. 2. �Color online� Weakly coupled chains: Transmittance as
a function of flux for the anisotropic t-J model with J=0, t� =0.1,
L=6 rungs, t�=0.05t�, several values of t�, and N=6 �top� and
N=8 �bottom� electrons in the ground state.
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t� / t� 
1 only one dip shows up �reflecting the behavior of
half the number of particles in each band corresponding
mainly to each leg of the ladder as in Fig. 2�. On the con-
trary, for t� / t� �1 all N particles belong to the relevant lower
�bonding� band and two main dips arise at the positions cor-
responding to this strongly coupled case as in Fig. 3.

IV. EFFECTIVE MODEL FOR STRONGLY
COUPLED CHAINS

In order to study the strongly coupled case and understand
the transition toward the limit of isotropic exchange, we have
mapped our ladder Hamiltonian Hring to an effective model in
the subspace of the bonding states of each rung, using de-
generate perturbation theory up to second order in t�.24 The
model is valid for energies lower than t� and a less than
half-filled system,

Heff = − t��
i�

�ĉi�
† ĉi+1,� + H.c.� + J�

i

�Si · Si+1 − 1/4�

+ t��
i�

�ĉi+2,�
† ĉi��Si · Si+1 − 1/4� + H.c.� , �6�

where J=J� /2+2t�
2 / �t�−3J� /4�, t�= t�

2 / �t�−3J� /4�, and
ĉi�= 1

�2
�ci1,�+ci2,��, the bonding operator.

The second dimension of the original ladder is reflected
by the second-nearest-neighbor term, which tends to destroy
the dips. In Fig. 5 we show the transmittance of a particle
through a bonding channel and compare it with that of Heff,
finding excellent agreement for the strongly coupled case. As
t� / t� diminishes, the curves start to differ as Heff loses its
validity. Comparing with Fig. 3, where a particle is injected
to one site only instead of into a bonding state, we find that
the effective model is also valid for this case as long as t�

� t� since the antibonding band is shifted to very high ener-
gies.

So far we have presented results for J� =J�=0. Finite in-
teractions introduce an extra spin shuffling in the system,
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FIG. 6. �Color online� Transmittance through a bonding channel
�lines� and comparison with Heff �symbols� for finite interactions J�

and J� for t�=50t�, L=6 rungs, and N=6 electrons.
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FIG. 3. �Color online� Strongly coupled chains: Flux-dependent
transmittance for L=6 rungs, J=0, and t� =0.1. Top: t�=0.05t� and
N=4 electrons. Bottom: t�=0.09t� and N=6 electrons.
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FIG. 4. �Color online� Transition from weakly coupled to
strongly coupled chains: Flux-dependent transmittance for several
relations of inter- to intrachain hoppings t� / t� for L=6 rungs and
N=6 particles.
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FIG. 5. �Color online� Transmittance through a bonding channel
and comparison with Heff for the same system as in Fig. 3.
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mixing the spin-wave quantum numbers. In spite of the fact
that the conditions that lead to Eq. �5� �based on the J=0
limit� are no longer valid, dips are still observed for small
values of the interactions in the strongly coupled case. How-
ever, the effect of the interaction is to reduce the depth of the
dips and shift their position. In Fig. 6 we show results for the
six-rung ladder with N=6 particles in the ground state and
several values of the interactions. Taking into account the
fact that the J’s are obtained perturbatively from the large-U
Hubbard model, we keep their relation as J� /J� = t�

2 / t�
2. Two

observations can be made: �i� The dips are still present for
finite J’s. �ii� However, as for the J=0 case where the dips
were affected by the interchain hopping parameter, in this
case we also find shifts and reductions in their depth caused
by the interactions. A similar behavior occurs for weakly
interacting chains. We also find that the effective model fits
quite well the results for the ladder for finite J’s and its range
of validity extends to appreciable values of the interaction
parameters.

V. CONCLUSIONS

In summary, we have found that the dips in the conduc-
tance, predicted to appear in strongly correlated chains as a

consequence of spin-charge separation, are robust in the
presence of a second transmission channel modeled by a lad-
der system in the anisotropic limit. For a wide range of pa-
rameters, in particular for weak and strong hoppings across
the rungs t�, the dips remain. However, their position differ
from the predictions stemming from the exactly solvable
case of the Hubbard chain with infinite U �or t-J model with
J=0�.17 For intermediate values of t� the dips disappear. The
signatures of spin-charge separation are also robust for finite,
albeit small, values of spin-spin interactions. Signatures of
spin-charge separation are observed in interacting finite sys-
tems with more than one chain opening the possibility of
measuring this peculiar phenomenon in real nanoscopic sys-
tems.
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